
Brightness Function Program Information

1. Contributors and history.

The underlying algorithm was published by Richard J. Gardner and Peyman Milanfar [3]
in 2001. The same year, it was implemented with the assistance of Western Washington Uni-
versity (WWU) undergraduate student Chris Street. From 2003 to 2006, improvements were
made by WWU undergraduate students Chris Eastman, Thomas Riehle, and Greg Richard-
son. The GUI was designed by WWU undergraduate student Dale Jennings in 2010. The
original web page GUI was designed by WWU undergraduate student Dale Jennings in 2010
and subsequently modified by WWU undergraduate students Roberto Vergaray, Ian Fisk, and
Elliott Skomski.

The convergence property of the algorithm was proved for exact data by Gardner and
Milanfar [4] and for noisy data by Gardner, Kiderlen, and Milanfar [5].

Both the mathematics and implementation were supported by National Science Foundation
grants DMS-9802388, DMS-0203527, DMS-0603307, DMS-1103612, and DMS-1402929.

2. How the program works.

A fairly comprehensive description of the algorithm can be found in [2, Section 4.4 and
Note 4.12], so we only provide a brief outline here.

The underlying theoretical result is Aleksandrov’s projection theorem [2, Theorem 3.3.6],
which says that an origin-symmetric convex body in Rn is uniquely determined by its bright-
ness function, i.e., by the areas of its orthogonal projections (“shadows”) on hyperplanes. The
algorithm works in two phases: In Phase I, the surface area measure of an origin-symmetric
convex polytope that approximates the target shape is obtained from finitely many noisy
measurements of the brightness function, and in Phase II, this polytope is reconstructed from
the surface area measure. (Phase I was considered earlier, though in a quite different context,
by Kiderlen [6], [7].)

Phase I works by using Cauchy’s projection formula [2, (A.45), p. 408] to compute the areas
of shadows of a convex polytope described in terms of the areas of and outer unit normal
vectors to its facets. A least-squares approach is used to find the origin-symmetric convex
polytope that best fits the data. (An alternative linear programming method, appropriate
when noise is absent or very low, is also available.) A key point is that a suitable set of
outer unit normal vectors to the facets can be prescribed in advance and computed from the
measurement directions; this is an application of a theoretical result due to Campi, Colesanti,
and Gronchi [1]. In view of this, the only variables are the areas of the facets, which appear in
a linear fashion. The optimization problem is solved by the function lsqnonneg from Matlab’s
Optimization Toolbox.

Phase II is essentially Algorithm MinkData, the algorithm for reconstructing a convex
polytope from its surface area measure. See the Geometric Tomography web page for more
information.
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For reconstructions via the Geometric Tomography web page, the user can choose the
number of measurement directions, up to 50. For each such choice the directions are taken
from a library of the best known chordal packings of lines available on the web page of
Neil Sloane at http://neilsloane.com/grass/dim3/. This ensures that the measurement
directions are as “spread out” as possible over the unit sphere.

Many other features have been implemented beyond those offered in the present GUI. Some
of these may be made available in future versions.
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