
Support Function Program Information

1. Contributors and history.

The underlying algorithm was conceived by Richard J. Gardner and Markus Kiderlen in 2004
and published in [2]. It was implemented in 2006–7 with the assistance of Western Washington
University (WWU) undergraduates Greg Richardson, LeRoy Miller, and Michael Taron. The
original web page GUI was designed by WWU undergraduate student Dale Jennings in 2010
and subsequently modified by WWU undergraduate students Roberto Vergaray, Ian Fisk, and
Elliott Skomski.

Convergence of the algorithm was proved by Gardner, Kiderlen, and Milanfar [3].
Both the mathematics and implementation were supported by National Science Foundation

grants DMS-0203527, DMS-0603307, DMS-1103612, and DMS-1402929.

2. How the program works.

If the target shape is a convex body K in Rn, noisy measurements y1, . . . , yk of the support
function hK of K are taken in directions u1, . . . , uk, respectively. The main action is then to
solve the following constrained linear least squares problem:

min
x1∈Rn,...,xk∈Rn

k∑
i=1

(yi − xT
i ui)

2,(1)

subject to xT
j ui ≤ xT

i ui for 1 ≤ i 6= j ≤ k.(2)

If x̂1, . . . , x̂k is a solution of (1)–(2), then the output of the program is the convex hull Q̂k

of {x̂1, . . . , x̂k}.
To understand how this works, note that for each direction ui, there is at least one point xi

in K contained in the supporting (tangent) hyperplane

{x ∈ Rn : xTui = hK(ui)}.
By the definitions of the support function and supporting hyperplane, when 1 ≤ j ≤ k, we
have

xT
j ui ≤ hK(ui) = xT

i ui,

so the constraint (2) is satisfied. If the measurements are exact, then Q̂k is a convex polytope
with the same support function values as K in the measurement directions u1, . . . , uk; see
Figure 1 for a two-dimensional illustration.

Implementation is done with Matlab’s Optimization Toolbox to solve the least squares
problem, and Matlab’s convex hull function and graphics to produce the picture for three-
dimensional reconstruction.

A linear program version of the algorithm is also provided (see [2] for details), and this
is much faster and better, or at least comparable, in performance at low levels of noise and
reasonably small numbers of measurements.
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Figure 1. Possible output (dotted) of the algorithm when measurements are
exact (shown in two dimensions for convenience).

It is perhaps surprising that the algorithm is the first fully effective one for the purpose of
reconstruction from support functions in R3. In 1990, Prince and Willsky [4] proposed and
implemented an algorithm, also based on a constrained linear least-squares fit, that works very
well in two dimensions. However, it fails to be effective in R3 because its constraint is hard
to make explicit. In the algorithm used here, the consistency constraint is always completely
explicit in (2), and indeed requires only k(k − 1) linear inequality constraints. On the other
hand, there are 3k real variables in the objective function (1) when n = 3, as opposed to k in
the Prince-Willsky algorithm.

For background on reconstruction from support functions, including an explicit description
of the Prince-Willsky algorithm, see [2] or [1, Note 3.8].

For reconstructions via the Geometric Tomography web page, the user can choose the
number of measurement directions, up to 50. For each such choice the directions are taken
from a library of the best known chordal packings of lines available on the web page of Neil
Sloane at http://neilsloane.com/grass/dim3/.

Many other features have been implemented beyond those offered in the present GUI. Some
of these may be made available in future versions.
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