
X-Ray Function Program Information

1. Contributors and history.

In May, 2004, Richard J. Gardner and Markus Kiderlen of the University of Aarhus, Den-
mark, conceived the algorithm described below for reconstructing planar convex bodies from
noisy measurements of their X-rays. This work was eventually published in [3].

In September, 2005, Western Washington University (WWU) undergraduate Mark Lock-
wood began work on implementing the algorithm. Mark was the principal developer of the
basic program, making contributions until around 2009, including the incorporation of simu-
lated annealing.

WWU undergraduate Kyle Rader brought the program to its present form by significantly
extending its capabilities, redesigning the GUI, and configuring it for use on the Geometric
Tomography website. It was subsequently modified by WWU undergraduate students Ian
Fisk and Elliott Skomski.

Both the mathematics and implementation were supported by National Science Foundation
grants DMS-0203527, DMS-0603307, DMS-1103612, and DMS-1402929.

2. How the program works.

The following description is a slightly edited version of the one in [1], where other algorithms
for reconstruction from X-rays are also presented.

The Gardner-Kiderlen X-ray algorithm [3] arose from theoretical work [4] in which it was
shown that there are certain sets of four directions in R2 such that the exact X-rays of a planar
convex body in these directions determine it uniquely among all planar convex bodies. For
example, directions specified by the four vectors (0, 1), (1, 0), (2, 1), and (−1, 2) constitute
such a set [2]. The GKXR algorithm is based on the simple observation that given a sufficiently
dense set of lines meeting a convex body K, the convex hull of all the points at which the
lines intersect the boundary of K will form a convex polygon that approximates K well. The
algorithm attempts to find this polygon for the set of X-ray measurement lines.

Fig. 1 shows a schematic diagram of the basis of the algorithm. The unknown object is the
oval K, assumed to lie inside the circle. For clarity, only a single X-ray, taken in the direction
u, is considered in Fig. 1, although in practice X-rays in several different directions are used.
We shall assume here that four X-rays are taken, the default setting in the program. For each
X-ray direction u, detector pixels are located at the equally spaced points t1, . . . , tk on the
axis in the orthogonal direction v, where k is the number of beams selected in the program.
The dotted lines through these points represent beams along which measurements are taken.
A pair of points (in Fig. 1, one red and one blue, shown in purple if they coincide) is placed
randomly on each of the 4k beams. Since the geometry of the beams is known, the position
of each point can be described by a single real variable giving the location of the point on the
beam. Therefore the position of all of the points can be described by a single vector variable
z with 8k real components.
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Figure 1. Illustration showing the basic principles behind the GKXR algorithm.

An initial guess for K is obtained by forming the convex hull of all 8k points, except those
for which a pair coincides, i.e., the purple points. This is the convex polygon labeled P [z]
in Fig. 1. The convex hull is computed using a standard algorithm as a subroutine. The
reason for ignoring the purple points in taking the convex hull is that if a beam does not meet
K, there must be some mechanism to eliminate the pair of points that lies on that line. In
practice, a threshold (“point elimination” in the program) is set so that a pair of points is
eliminated if they become too close in the iterative optimization procedure to be described
next.

In order to improve the initial guess, the positions of the pairs of points on the beams must
be adjusted. This is effected by computing the sum, over all beams, of the squares of the
differences between the measured X-ray value for K and the corresponding X-ray value of
P [z]. This least squares sum is the objective function in an optimization problem with 8k real
variables and an optimization routine is used to drive the value of the objective function down
to a minimum. The output of the algorithm is the convex polygon Pk = P [z] corresponding
to the optimal vector z of these real variables.

In [3] it is shown that for any finite set of directions for which the corresponding exact X-
rays determine a convex object uniquely, the output Pk converges to K as k →∞, even when
the measurements are affected by Gaussian noise of fixed variance. Moreover, this remains
true even if the optimization problem is not solved exactly, but only within an error εk > 0,
provided εk → 0 as k →∞; see [3, p. 337]. In practice, the optimization problem involved is
heavily non-linear. The fmincon function from Matlab’s Optimization Toolbox is used, along
with simulated annealing to improve performance.



3

References

[1] A. Alpers, R. J. Gardner, S. König, R. S. Pennington, C. B. Boothroyd, L. Houben, R. Dunin-Borkowski,
and K. J. Batenburg, Geometric reconstruction methods in electron tomography, Ultramicroscopy 128
(2013), 42–54.

[2] R. J. Gardner and P. Gritzmann, Discrete tomography: Determination of finite sets by X-rays, Trans.
Amer. Math. Soc. 349 (1997), 2271–2295.

[3] R. J. Gardner and Markus Kiderlen, A solution to Hammer’s X-ray reconstruction problem, Adv. Math.
214 (2007), 323–343.

[4] R. J. Gardner and P. McMullen, On Hammer’s X-ray problem, J. London Math. Soc. (2) 21 (1980),
171–175.


