##
References

Use mouse wheel or arrow buttons to scroll:

[1] G. Averkov and G. Bianchi, Confirmation of Matheron's conjecture on the covariogram of a planar convex body, *J. Eur. Math. Soc. (JEMS)* **11** (2009), 1187-1202.

[2] G. Bianchi, Matheron's conjecture for the covariogram problem, *J. London Math. Soc.* (2) **71** (2005), 203-220.

[3] G. Bianchi, The covariogram determines three-dimensional convex polytopes, *Adv. Math.* **220** (2009), 1771-1808.

[4] G. Bianchi, R. J. Gardner, and M. Kiderlen, Phase retrieval for characteristic functions of convex bodies and reconstruction from covariograms, *J. Amer. Math. Soc.* **24** (2011), 293-343.

[5] W. Blaschke, H. Rothe, and W. Weitzenböck, Aufgabe 552, *Arch. Math. Phys.* **27** (1917), 82.

[6] H. Busemann and C. M. Petty, Problems on convex bodies, *Math. Scand.* **4** (1956), 88-94.

[7] C. L. Epstein, *Mathematics of Medical Imaging*, Prentice Hall, Upper Saddle River, NJ, 2003.

[8] M. Fujiwara, Über die Mittelkurve zweier geschlossenen konvexen Kurven in Bezug auf einen Punkt, *Tohoku Math. J.* **10** (1916), 99-103.

[9] R. J. Gardner, *Geometric Tomography*, second edition, Cambridge University Press, New York, 2006.

[10] R. J. Gardner and P. Gritzmann, Discrete tomography: Determination of finite sets by X-rays, *Trans. Amer. Math. Soc.* **349** (1997), 2271-2295.

[11] R. J. Gardner and M. Kiderlen, A solution to Hammer's X-ray reconstruction problem, *Adv. Math.* **214** (2007), 323-343.

[12] R. J. Gardner and M. Kiderlen, A new algorithm for 3D reconstruction from support functions, *IEEE Trans. Pattern Anal. Machine Intell.* **31** (2009), 556-562.

[13] R. J. Gardner, M. Kiderlen, and P. Milanfar, Convergence of algorithms for reconstructing convex bodies and directional measures, *Ann. Statist.* **34** (2006), 1331-1374.

[14] R. J. Gardner, A. Koldobsky, and T. Schlumprecht, An analytical solution to the Busemann-Petty problem on sections of convex bodies, *Ann. of Math.* (2) **149** (1999), 691-703.

[15] R. J. Gardner and P. McMullen, On Hammer's X-ray problem, *J. London Math. Soc.* (2) **21** (1980), 171-175.

[16] R. J. Gardner and P. Milanfar, Shape reconstruction from brightness functions, in: *Proc. SPIE Conf. on Advanced Signal Processing Algorithms, Architectures, and Implementations X*, San Diego, CA, 2001, Proceedings of SPIE **4474**, pp. 234-245.

[17] R. J. Gardner and P. Milanfar, Reconstruction of convex bodies from brightness functions, *Discrete Comput. Geom.* **29** (2003), 279-303.

[18] P. R. Goodey, R. Schneider, and W.Weil, On the determination of convex bodies by projection functions, *Bull. London Math. Soc.* **29** (1997), 82-88.

[19] P. C. Hammer, Problem 2, in: *Proc. Symp. Pure Math., vol. VII: Convexity (Providence, RI)*, Amer. Math. Soc., Providence, RI, 1963, pp. 498-499.

[20] G. T. Herman and A. Kuba (eds.), *Discrete Tomography: Foundations, Algorithms, and Applications*, Birkhäuser, Boston, 1999.

[21] G. T. Herman and A. Kuba (eds.), *Advances in Discrete Tomography and Its Applications*, Birkhäuser, Boston, 2006.

[22] R. Howard, Convex bodies of constant width and constant brightness, *Adv. Math.* **204** (2006), 241-261.

[23] R. Howard and D. Hug, Smooth convex bodies with proportional projection functions, *Israel J. Math.* **159** (2007), 317-341.

[24] A. C. Kak and M. Slaney, *Principles of Computerized Tomographic Imaging*, SIAM, Philadelphia, 2001.

[25] V. L. Klee and S. Wagon, *Old and New Unsolved Problems in Plane Geometry and Number Theory*, Math. Assoc. of Amer., Washington, C, 1991.

[26] E. Lutwak, Intersection bodies and dual mixed volumes, *Adv. Math.* **71** (1988), 232-261.

[27] H. Murrell, Computer-aided tomography, *Mathematica J. * **6** (1996), 60-5.

[28] S. Nakajima, Eine charakteristische Eigenschaft der Kugel, *Jber. Deutsche Math.-Verein.* **35** (1926), 298-300.

[29] F. Natterer and F. Wübbeling, *Mathematical Methods in Image Reconstruction*, SIAM, Philadelphia,2001.

[30] C. M. Petty, Projection bodies, in: *Proc. Colloquium Convexity, Copenhagen, 1965*, ed. by W. Fenchel, Københavns Univ. Mat. Inst., Copenhagen, 1967, pp. 234-241.

[31] J. L. Prince and A. S. Willsky, Estimating convex sets from noisy support line measurements, *IEEE Trans. Pattern Anal. Machine Intell.* **12** (1990), 377-389.

[32] A. G. Ramm and A. I. Katsevich, *The Radon Transform and Local Tomography,* CRC Press, Boca Raton, FL, 1996.

[33] D. J. Rossi, Reconstruction from projections based on detection and estimation of objects, PhD dissertation, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 1982.

[34] M. Rychlik, A complete solution to the equichoral point problem of Fujiwara, Blaschke, Rothe, and Weitzenböck, *Invent. Math.* **129** (1997), 141-212.

[35] R. Schneider, Zu einem Problem von Shephard über die Projektionen konvexer Körper, *Math. Z.* **101** (1967), 71-82.

[36] P. Schwander, C. Kisielowski, M. Seibt, F. H. Baumann, Y. Kim, and A. Ourmazd, Mapping projected potential, interfacial roughness, and composition in general cyrstalline solids by quantitative transmission electron microscopy, *Phys. Rev. Lett.* **71** (1993), 4150-4153.

[37] G. C. Shephard, Shadow systems of convex bodies, *Israel J. Math.* **2** (1964), 229-236.

[38] J.-P. Thirion, Segmentation of tomographic data without image reconstruction, *IEEE Trans. Medical Imaging* **11** (1992), 102-110.

[39] A. Volčič, A three-point solution to Hammer's X-ray problem, *J. London Math. Soc.* (2) **34** (1986), 349-359.